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Abstract. To account for the strong temperature dependence of the photoluminescence intensity
from sodium cryptand sodide, we introduce a spatially extended excitonic state into which
exciton—polaritons can be scattered. The relevancy of such a state is discussed. By considering
the exciton—polariton transport equation which includes the annihilation process for exciton—
polaritons, we derive the dependence of the fluorescence intensity on temperature. It is shown
that the annihilation process is completed very early during the time evolution of the exciton—
polaritons, which is consistent with the experimental observation. The nonradiative transition
of the spatially extended state is described in terms of a spherically symmetric lattice relaxation
induced by the diffuse wavefunction of the spatially extended state. Continuum elasticity theory
and variational principles are combined in an effort to find the electron—lattice coupling that is
responsible for a polaron state in sodium cryptand sodide. Bartram and Stoneham’s criterion is
employed in establishing the maximum allowable speed of sound in sodium cryptand sodide.

1. Introduction

Optical and electrical properties of alkalides have been investigated by absorption
measurements [1, 2], photoluminescence experiments [3, 4, 5], and by conductivity
measurements [6]. The alkalide films whose anions are Ka, Rb~, and Cs have shown
broad absorption spectra [1, 2]. Many alkalides including (&222)Na’, Rb*(15C5)Na-,
K*(15C5pNa-, K+(15C5yK~, and K"(HMHCY)Na~ have vyielded fluorescence with
lifetimes of the order of a few ns at low temperature [4]. In"{@222)Na (sodium
cryptand sodide), C222 represents the bicyclic polyether, cryptand [2.2.2] [1]. The unusual
anion state of Na is stabilized by confining the sodium positive ion in the cage structure
of the multi-atomic cryptand molecule C222, which prevents thé Biad Na ions from
forming sodium metal. The cryptands shield the enclosed cations from the anions. In other
alkalides, (15C5)and HMHCY are also the complexants that stabilize the ionic structures.
15C5 and HMHCY represent a crown ether 15-crown-5 and hexamethyl hexacyclen,
respectively [1].

Since N&(C222)Na has the strongest photoluminescence and is the most stable among
all the alkalides, it has been investigated extensively. Bannetaat [3] showed that the
time-integrated fluorescence from sodium cryptand sodide has a peak at 1.84 eV at a nominal
temperature ©7 K with an excitation photon energy of 2.1 eV. The photoluminescence
from Na"(C222)Na was attributed to the 3p> 3s bound-bound transition of Na
Conductivity measurements have revealed that sodium cryptand sodide behaves as an
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intrinsic semiconductor with a band gap of about 2.5 eV [6]. It was also shown by time-
resolved photoluminescence experiments that the lineshape of the fluorescence is red-shifting
with time [3, 5]. In addition to this, the optical excitation was observed to be spatially
migrating and the fluorescence lineshape was dependent on crystal size [5]. In [5] all of
those observations were consistently explained in terms of an exciton—polariton (EP) [7, 8]
picture. In this case the 3p state of the Neonstitutes an excitonic state which couples
with a photon to form the EP state.

It was also experimentally observed that while the fluorescence intensity decreases
drastically with increasing temperature [3], the lifetime of the spectrally integrated
fluorescence (or the time evolution of the lineshape peak) was independent of temperature
[9]. The purpose of this paper is to explain this thermal behaviour of the fluorescence. We
also propose that while the EP state that arises from the coupling of the exciton and the
photon is responsible for the fluorescence in sodium cryptand sodide, a polaron state arising
from the strong coupling of the electron in a spatially extended state and the spherically
symmetric lattice deformation is necessary in quenching the photoluminescence.

In section 2, we introduce a spatially extended state and discuss the relevancy of its
presence in sodium cryptand sodide. The scattering of the EP into the spatially extended
state is considered. The transition rate is also calculated. In section 3, we derive the
relationship between the fluorescence intensity and the temperature and compare that with
the experiment. In section 4, the nonradiative de-excitation process by which the spatially
extended state makes a transition into the ground state is described. The lattice deformation
induced by the spatially extended state is considered.

2. The rate of transition of exciton—polaritons into spatially extended states

The wavefunction of the sodide anion’s 3p state is presumably confined within the
octahedron of radius 2.3 formed by six surrounding cryptated sodium cations. This

3p state constitutes an excitonic state which couples with the photons to form the EP state.
To understand the thermal quenching of the EPs, let us first introduce another excitonic state
whose wavefunction is more extended than that of the 3p state. Unlike the localized 3p state,
such a spatially extended state (SES) may have a wavefunction that extends significantly
beyond the octahedron mentioned above.

The density of the SES produced by the EPs in the low-laser-excitation limit is small.
Thus it is appropriate to assume that the interaction between adjacent SESs is not large. We
also assume a negligible interaction between the SES and the ground states of the adjacent
sites, so the SES does not propagate. We simply regard the SES as having a stationary
hydrogen-like wavefunction that does not belong to a band state. As we shall see in section
4, the SES also provides a suitable mechanism for the nonradiative transition of the EPs: the
reduced amount of negative charge inside the octahedron induces relaxation of the lattice
in a breathing mode, and the SES de-excites nonradiatively via this lattice deformation.
Also note that the coupling strength of the exciton and the photon depends on the dipole
matrix element between the ground state and the excitonic state [8]. Since the SES has a
spherically symmetric wavefunction, it is obvious that it will not couple with the photon
to form another EP state. Thus if the EP makes a transition into the SES then it will de-
excite nonradiatively and there will be a reduction in the intensity of the photoluminescence.
This behaviour will provide an adequate basis for explaining the thermal dependence of the
photoluminescence. (To be consistent with experimental observations, the transition to the
SES should be finished very early. See the discussion in section 3.) In this section we first
calculate the matrix element between the EP state and the SES. TheS&Shtred at site
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R, is written as
= D(m)a3, a1 no) = Y _ D(m)aj,,,.don o) @

wherem denotes the sit®,,, D(m) is the distribution function of the electron-hole internal
motion and satisfies

Y D(m)D*(m) =1

to ensure that the normalization conditiéon| n) = 1 is satisfieda,, is the annihilation
operator of a sodide anion’s 3p electron at sig, a3, ., is the creation operator of an
electron at siteR,, + R,,, ag, is the annihilation operator of a sodide anion’s 3s electron at
site R,, |no) = aj, aon o) is the sodide anion’s 3s3p excited state that is localized at site
R,, and|o) is the crystal ground state. In its ground state; Nias two electrons in the 3s
state.

For our purposes we can approximate the EP state with an excitonic state. This is
possible because in the early stage of the time evolution of the EP, the lower-polariton-
branch (LPB) EPs dominate over the upper-polariton-branch (UPB) EPs and the former
have a negligible amount of the photon component (it will be shown in section 3 that the
scattering from the EP to the SES is completed while the EP is exciton-like). (From now
on, the EP means the exciton-like LPB polariton state.) Thus, for the EP state in the early
time region, we have

|kio) = Zé’“ ™ lmg) = f > ek mal aom lo) @)

whereN is the number of sites in the crystal.

The transition of the EP into the SES is caused by the scattering of the former by
acoustic and optical phonons. For the optical phonon—electron interaction we use the
Frohlich interaction and for the acoustic phonon—electron interaction we use the deformation
potential interaction [10]:

Hep= Y. Y Pl —b'hag, am €)
J=LA,LO k.q
where b.°* and b}"* are the creation operators of a longitudinal optical (LO) phonon
and a longitudinal acoustic (LA) phonon with wave vecgorespectivelya;;, is the Bloch
representation (Fourier transform) @f,, P°(q) = C1?/q, andP*4(q) = C**,/q where

cro _i[Zhood® (11 2 cin_i FD2NY
N 1% f0o €0 201V ’

Here,hw; o (hwy ) is the energy of a LO (LA) phonor¥, the crystal volumeg the electron
chargeg, (go) the optical (static) dielectric constard, the electron deformation potential,
p the density of the crystal, and the speed of sound.

The total transition rate with which the EPs are scattered into the SES centred at any
site is then given by, using equations (1)—(3) after converting the Wannier representation
into the Bloch representation,

2 2 1 _
Wiorat = 2= IDOPCH"Y g2 o 8(Es —Foio — E)
q
+(npo + 1D 8(Es+hwro — E)]

2 2 _
+= IDOP[C*|"Y " qnLad(Es —hors — E)
h q
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+(npa+ 1) 8(Esg+hwpa — E)] 4)

wheren; o andn;, are the LO and LA phonon occupation numbers, respectivigdythe

energy of the SES, anH the EP energy|D(0)|? is the probability that the electron in the

SES will be found in the site (octahedral cavity) where it originally belonged in the ground
state or in the 3p state before making the transition into the SES. In equation (4) the first
and second terms in the parentheses describe the conservation of energy for the phonon
absorption process and the phonon emission process respectively.

3. The temperature dependence of photoluminescence intensity

Let us consider the transport process of the (LPB) EPs. The LPB EPs are constantly

scattered by phonons into themselves (intra-branch scattering) and into the UPB (inter-

branch scattering). They undergo radiative decay when they reach the crystal-to-vacuum
boundary and undergo nonradiative decay at defect sites. In addition to these decays they
are scattered into the SES by phonons.

However, within our time-scale (a few ps) we need to consider only the intra-branch
scattering and the transition into the SES. This is due to the fact that in the exciton-like
dispersion region of the LPB the density of states of the UPB is negligible compared to that
of the LPB and the radiative decay is also negligible (only the photon component of the
polariton escapes from the crystal). The nonradiative decay at defect sites is also negligible
within our time-scale. Since the experimentally measured lifetime of the fluorescence from
the Na"(C222)Na is about 5 ns [3], the nonradiative decay rate is of the order Bfs1b
or smaller. As will be discussed later, it takes a few ps before the EPs are scattered into the
SES after they are produced by a laser pulse. Therefore, during that period the nonradiative
decay at defect sites does not make a sizable contribution to reducing the number of EPs.

Let the populationp(E, r) be the number of the (LPB) EPs per unit energy interval at
time z. Then, the transport equation relevant within our time-scale is

%d)(E,t) = —Wia¢(E, 1) +de’ [#(E'.0OZ(E' - E) —$(E,NZ(E — E")]  (5)

where the first term on the right-hand side represents the scattering into the SES and the
second term represents the intra-branch scattering mentioned b&fdté— E) signifies
the intra-branch scattering of the EP with enefgyinto the one with energ¥ within the
LPB by LA phonons via deformation potential interaction.

If we integrate equation (5) over entire energy span, then the second term vanishes
(because the intra-branch scattering conserves the total number of EPs) and we obtain

d
3 / dEG(E, 1)

2 1
= — % |D(0)? |CL0|ZS(ZI: qZ) [nLo¢(E—, 1) + (nLo + D¢ (E, 1)]

2 _ _
—7” D)2 | L4 Xq: {gnia(ing)d(Es — hiug. 1)

+q[nrahpng) + 1] ¢(Es +hug, 1)} (6)
where the LO phonon energy was assumed to be dispersioslassthe number of LO
phonon branches;,_ = E5 — hw; o, andE, = Eg + hw;o. Note that, because of energy
conservation, the scattering of the EPs into the SES occurs only in a limited region of the
dispersion curve (see figure 1).
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Figure 1 shows the dispersion curves of the EP schematically. It also describes the
energy relaxation process of the EPs and the scattering of them into the SES. The thick line
segment betweelr, and E_ denotes the region where the EP can be scattered into the
SES. The bell-shaped curves schematically represent the EP populéfion). When the
EPs are produced by a laser pulse initially, their energy is greaterBEharThe energy of
the EP begins to decrease gradually along the LPB dispersion curve due to the intra-branch
scattering by LA phonons (see the discussion later). When its energy reBchats, it
is also scattered into the SES and it continues to be scattered into the SES until it reaches
E_ att . As a consequence, the number of EPs is reduced when its energy is lowered
below E_. Since the number of phonons available for the scattering of the EP into the SES
increases with temperature the fluorescence intensity decreases at higher temperatures.

UPB LPB

OE, t<ty) ="

ENERGY

E+=Es+hﬂ)|_o

E.=E S -h(l)Lo

WAVEVECTOR

Figure 1. A schematic representation of the EP evolution. The energy of the EP decreases along
the LPB dispersion curve due to the intra-branch scattering by phorndenotes the energy

of the SES and the scattering of the EP into the SES occurs betizeeand E_, by energy
conservation. Bell-shaped curves represent schematically the EP population. The scattering of
the EPs into the SES makes the population reduce when the energy is loweredthelow

To solve equation (6) approximately, we assume that the annihilation of the EPs by the
LO and LA phonons does not affect the energy relaxation process of the EP population
along the LPB dispersion curve and we note that the intra-branch scattering lowers the
energy of the EPs on average (see figure 1). Let us consider the annihilation of the EPs
by LO phonon emission processes. For convenience, we assume that the LO phonon has a
narrow band widthA. Let us assume that the energy of an EP population of unit width is
lowered from just abové, to just belowE . by the intra-branch scattering. Then the rate
equation involving just this LO phonon emission process is obtained by using equation (6):

d 1|27 2| ~LO |2 1
S PED =—— [/7 |D(0)*|C*? S(Zgj q2>(nw e 1)] P(Ey,1). @)
Let the energy relaxation speed at enefgye n(E) (for the expression fon(E), see the
discussion below equation (11)). Then the time required for the EP to transit this band
width A is A/n(E,). Thus the EP population at just bela#,. is obtained by integrating
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equation (7) for the time duratioA /n(E):

¢<E< 1 +7A )
O (EY)

12 ! A
O 1) exp{—A [hi’ DO !CL0|ZS(Z qz)(””’ * 1)} 17(E+)}
q
(8)

where EX and E7 are the energies just below, and just aboveE respectively. Thus
we see that after the scattering by the LO phonon emission process the total number of EPs
is reduced by a factor

2 2 1 1
exp{— [E |D(0)|*|CL?| S(Z qz>(nL0 + 1)] n(E+)} .

q

Similar calculations can be done with LO phonon absorption, LA phonon absorption and
LA phonon emission processes. Therefore, one has as the total niwntfepolaritons in
the LPB, when all of them have energies sufficiently lower tikan

 u us[ na@) (nLA(u)+1)}_B[ mo (nLo+1)“

0 n(Es —u) n(Es +u) n(E-) n(Ey)

N = N exp{—A
9)
where Ny is the total number of polaritons at= 0, A and B are defined by
A=|DOPD/2nh*pp® B =2wioe’(e — &5 )Skp ID(O))?

and alsoEp = hukp wherekp is the radius of a sphere whose volume is equal to that of the
Brillouin zone,kp = (67?N/ V)l/?’. The summations ovaey in equation (6) were replaced
with integrations in equation (9) the usual way. The spectrally and temporally integrated
intensity! of the fluorescence from NgC222)Na is proportional taV. Rewriting equation

(9), one obtains, as the relationship between the fluorescence intémsitythe temperature

T [11],

In(I) = —-K T"'/ED/U{BT) d v s + constant (10)
= — U — —
S A e —1 exphoro/ksT) — 1

wherekp is the Boltzmann constant and

2A B [ 1 4 1 }

" n(Es) ’ n(E-) " n(Ey)
are temperature-independent quantities. In equation (10), a Bose distribution of the phonons
was used, ang was taken outside the integral since its energy dependence is much slower
than that of the other terms in the integrand. Equation (10) gives an excellent fit to the
experimental fluorescence intensity data in [3] with the parameter values6.34x 1076,
K> = 471, u = 4.44 x 10* cm s* (for the choice of this speed of sound, see section 4)
andZw; o = 4.3 meV. The value of the rati&;/K, gives a reasonable magnitude in this
case.

Let us summarize the experimental observation with fluorescence from sodium cryptand
sodide. At a fixed temperature, the fluorescence linewidth is nearly constant (increases
very slowly) over time after about 1 ns. However, the lineshape is red-shifting with time
and the decay of the spectrally integrated fluorescence can be expressed in terms of a
mono-exponential decay. In that case it is easy to see that the fluorescence decay at a
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fixed wavelength can be approximated well by a bi-exponential function containing two

lifetimes. As was mentioned previously, the intra-branch scattering of the LPB EPs by

acoustic phonons makes the fluorescence red-shift with time, making the bi-exponential
fitting an adequate choice.

We found experimentally that at a fixed wavelength the fluorescence from sodium
cryptand sodide decays faster at a higher temperature [9]. (As a result of more frequent
scattering by acoustic phonons at a higher temperature, the fluorescence broadens and red-
shifts. It can be seen that this red-shift of the fluorescence at a higher temperature is
responsible for the faster decay.) However, when the temperature-dependent fluorescence
is fitted with the bi-exponential decay we find that (1) the longer lifetime is temperature
independent (and also nearly wavelength independent); it was also observed that (2) the
time evolution of the spectrally integrated fluorescence is independent of temperature [9].
It is easily seen that the two observations (1) and (2) above are equivalent to each other.

Note that this means that, although the fluorescence intensity decreases with temperature,
the observed lifetime of the spectrally integrated fluorescence is independent of temperature.
The radiative decay of the EP occurs at the surface of the crystal via the photon component
of the EP and is independent of temperature. The nonradiative decay which occurs at the
defect sites via the exciton component of the EP is also independent of temperature (if
it were temperature dependent, then the lifetime of the spectrally integrated fluorescence
would be also temperature dependent). The only major temperature-dependent factor is the
process of annihilation of the EPs by phonons. Thus we require that the transitions of the
EPs to the SES do not affect the (apparent) decay rate of the EPs, although the transition
reduces the number of fluorescing EPs with increasing temperature.

Considering that the longer lifetime of the photoluminescence is about 5 ns, this
observation states that the transition to the SES is completed very early (earlier than the
resolution time of the detection apparatus). Otherwise, the apparent decay of the spectrally
integrated fluorescence will be accelerated as the temperature increases. (For example, let
us assume that the lifetime of the photoluminescence is 5 ns at 20 K. If the rate of transition
to the SES increases from (1 n$)at 20 K to (5 ns)! at 50 K then the decay rate of the
photoluminescence will also increase with temperature. However, if the rate of transition
to the SES increases from (1 ps) at 20 K to (5 ps)* at 50 K and the transition is
completed within 10 ps after the EPs are produced, then the decay rate after 10 ps will
be independent of temperature although the photoluminescence intensity is reduced with
increasing temperature.)

Therefore to check the consistency, let us estimate the tinag which an average EP
relaxes to the energg_ after it is produced by a laser pulse (see figure 1). It is mainly
determined by the intra-branch scattering process. When the LPB EPs are scattered by LA
phonons they either lose energy by phonon emission or gain energy by phonon absorption.
Therefore, the energy distribution of the EPs becomes wider as the number of the scatterings
increases. On average, the LPB EPs lose energy after being scattered by a phonon since
the transition probability for phonon emission is larger than that for absorption, the former
being proportional to:; 4 + 1 while the latter is proportional te; » whereny 4 is the LA
phonon occupation number. In short, the role played by the intra-branch scattering by the
LA phonons is to broaden and red-shift the distribution of the EP population with time
along the LPB dispersion curve.

For calculatings_ we use the deformation potential interaction for the intra-branch
scattering of the (LPB) EPs and use the exciton-like dispersion reldi@n = Eo +
R2k?/2m* for the energy of the EP where* is the effective exciton mask,the wave vector
of the EP, andEy the transverse exciton [12] minimum energy. (When the excited 3p states
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of the sodium anions are perpendicular to the wave vector, they form the transverse exciton.
Only transverse excitons couple with photons to form EPs.) By using the approximation of
Tait and Weiher [13] we obtain, as the average energy relaxationdaté:) of the EPs,

dE 2/2D?m*5/? 32
< dr > B ( nh*p >(E ko) ()
where D is the exciton deformation potential. In equation (5), the main effect of the
term —W, ;¢ (E, t) is to reduce the number of EPs. Therefoy€E) in equation (9) can
be approximated by the magnitude of the energy relaxation rate due to the intra-branch
scattering:n(E) = — (dE/dr).
t_ is then obtained by integrating equation (11):
2 %5/2 -2
E. =E0+<{24D’"+1)
h 1% a— Eg

whereq is the initial onset energy at which the EP begins to be scattered by the LA phonons.
Among the various physical quantities appearing in equation (12), only the density of the
Nat(C222)Na is known: p = 1.064 g cnT3. However, with reasonable combinations of
the parameter values, equation (12) yields good results. For examplexwiti2.1 eV
(laser excitation energy)tp = 1.9 eV, E_ = 1.95 eV, D = 9 eV, m* = 0.5 electron
masses, one obtains = 6 ps,n(E_) = 9x 10° eV s1. Also if we follow [5] the FWHM
of the EP distribution at_ is about 16 meV at 20 K . Therefore, nearly all the EP energies
are lowered belowE_ in about 6 ps after they are produced. Consequently the transition
of the EPs into the SES is completed within about 6 ps, which is a much shorter time than
the measured lifetime.

(12)

4. The nonradiative de-excitation process

In Na"(C222)Na, the sodide anions are placed in octahedral cavities that are formed by six
surrounding sodium cations [1, 14]. If an EP makes a transition to a SES, then the electron’s
wavefunction changes from the compact 3p state to a more diffuse state, describéahipy

in equation (1). Thus, the amount of negative electronic charge inside the cavity is reduced
by this transition. This results in a decrease of the attractive Coulomb interaction between
the sodide anion and the surrounding lattices (positive ions), leading to a relaxation of the
latter (figure 2). If the magnitude of the relaxation is sufficiently large, then nonradiative
de-excitation from the SES to the sodide anion’s ground state, the 3s state, will occur.

For simplicity, let us regard the octahedral cavity as a spherical one and assume that the
six cations are placed at the same distance from the centre of the cavity. We also assume
that the wavefunction of the SES is spherically symmetric. The ‘positive’ charge induced
by the SES establishes an electric field that causes the cations and the anions to deviate from
their normal configurations. Consider the effect of the electric field on a dipole consisting
of the sodium cation and the sodide anion. This electric field will have the largest effect
on the six dipoles surrounding the cavity. While the directions of the six dipoles are radial,
the directions of other dipoles at larger distances from the cavity are less correlated. Thus,
in evaluating the lattice deformation caused by the electric field, we neglect the force from
dipoles other than the six surrounding the cavity. s
. The radii of the sodide anions and the cryptated sodium cations are abodbRdb 4.5
A respectively [1, 14]. The latter are in van der Waals contact, making octahedral cavities
of sufficient size to allow the anions to fit snugly into them. Therefore we can assume that
only the cryptated sodium cations are elastically connected with each other in the crystal
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Q = Na'(C222)

= electron distribution in SES

(a) 3p state (b) SES

Figure 2. A schematic illustration of the lattice relaxation induced by the electronic transition
from the compact 3p state to the diffuse SES. With the SES the reduced amount of negative
charge inside the octahedron causes the attraction between negative and positive ions to decrease.
This results in the relaxation of the lattice.

and the smaller anions contribute to the elastic property through the interaction with the
cations. Thus the force on one of the six dipoles is acting at the position of the cation in
the radial direction with a spherically symmetric electric field.

We suppose that all the cations and the anions move according to the continuum elasticity
theory. The displacement of a cation at one site will make all other cations and anions
displace also. In continuum approach, #te component of the lattice displacementr)
at positionr due to the force density distributiofi(r) is described by [15, 16]

up(r) = / Upn (r — 1) fu (') A’ (13)

where f,,is the mth component of the force densitf and the Green’s functiot/y,, is
defined by [16]

2
Ciju . U (1) + 8im 8(r) = 0. (14)
0x; 0x;
U (r) represents the displacementr) at a pointr arising from a point force at the origin
in the x,,-direction andC;;, is elastic constant. For simplicity, we assume an isotropic case
for sodium cryptand sodide. In this case the elastic cons@pisreduce to two independent
constants and are given by [16]

Cijit = A0S + G(8irdji + 8udji). (15)

For a spherically symmetric force density distributi®@-) in an isotropic material, the
lattice displacement is also spherically symmetric. Using equation (13) and the Green’s
function [16] in equation (14) which is solved by a Fourier transform method, we obtain

— 1 1 " / N3 o / "N~
u(r)_73(k+2G) [”2/0 dr’ S(r'r +rfr dr’ S(r )] 70 (16)
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wherery is the unit radial vector. Let the origin of the coordinate be the centre of the cavity
and the radial force due to the induced electric field on one of the six dipol&srhe Then
in the continuum approximation the force density acting on the six dipoles whose sodium
cations are located at radius= R is given by
fr) = % §(r — R)To. a7

From equations (16) and (17) we obtain the desired expression for the lattice relaxation
u®(r) caused by the electronic transition to the SES,

FR A
2n(h+2G)r2"°

The total HamiltonianH of the system consisting of an electron and the deformable
lattice is written as

H = He + Hlattice + Hint (19)
where H,, Hj,.ic.., and H;,, represent the Hamiltonian of the electron, lattice, and the
electron—lattice interaction respectively. The lattice Hamiltorfi&,;.. is composed of the

lattice strain energy and kinetic energy. When expressed in terms of the normal coordinate
Sk it has the form

o1,
Hiustice = Xk: _72,0‘/ 785151 + éprkSkz . (20)
In a spherically symmetric lattice deformation only longitudinal acoustic phonons are

involved. Thus in equation (203, represents the normal coordinate of the longitudinal
lattice deformation with wave vectdt and is defined by

u(r) =Y —iSpene (21)
k
wherezy, is the lattice polarization unit vector. From the dispersion relation
pwzgku, = Z C;wvrkakvgkr

ovT

ul(r) = (R <r). (18)

[17] we have, with the elastic constants defined by equation (15), the angular frequgncy
of the longitudinal acoustic phonon with wave veckogas follows:
2G + A
P

To find the electron—lattice interaction Hamiltoniak,,, we use the variational principle
and the result obtained in equation (18). Let

Hiy = — Z Ji Sk (23)
2

wr = k. (22)

whereJy is the coupling constant to be determined and let us represent the total wavefunction
W by using Born—Oppenheimer approximation:

W=y, () [ Tor(Si) (24)
k

where Y, and ¢;, are the electron and phonon wavefunctions respectively. Variation of
E = (V| H |¥) with respect tap;; (Sk;) gives

_ —az—i—leSZ—JS b1 (Skt) = Medr(Skr) (25)
—pVow =
20V 952, 2P " Pk T RO | PRIIM) Z ARPRIOM
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which is an equation for a displaced oscillator with the equilibrium valug.at S,SI where
Jx

Sy =
ki pvwlzc

(26)

Now 521 is determined by the Fourier transformation @f(r) in equation (18). Since
€ = qo for longitudinal acoustic phonons, whegg is the unit vector in the direction of
the wave vectog, we have

1 ~
S =1y / u® - Goe 17 o

N 1/ 2FR /0" cosqr  singr

= — - - dr
V\AL+2G )/ Jr qr q%r?

1/ 2FR \singR

- ) Sk (27)

VAA+2G) ¢°R

Comparison of equation (26) with (27) gives the expression/fand the interaction energy

I is given by

I = (W] Hyy |W) = —pV Y i Sp (drl Sy |¢n)- (28)
k

When the lattice is completely relaxed, the oscillators are in their ground states and
(dk| Sy 1¢%) = Sy Thus

2,,2
20F%u {1 _1sin(2kDR)} (29)

_ 2,00\2 _
T= oV D ek Si == G 267 12 ar

wherepu is the speed of sound of the LA phonayi(2G + 1)/p. In equation (29) the usual
approximation was used in converting the summation @& an integration.
Using equations (20), (25), (26), and (28) we see that the lattice ederg\given by

L = (V| Hutice | V)
§ X ( +1> % ]+E<¢|JS|¢)
= wg|n =
T K\ 2 2,0Va)i = Kl Tk Okl [Pk

where we have also assumed that all the oscillators are in their ground sate€). The
total energyE of the system consisting of the electron and the deformable lattice is given

by

2

where K is the electronic energiW| H, |W).

Since the spatially extended state has a higher energy than the sodide anion’s compact
3p state whose energy is about 1.9 eV with respect to the ground state, we expect that
19 eVL K < 25 eV, where the upper bound energy 2.5 eV represents the continuum state,
measured in a temperature-dependent conductivity experiment. The optical excitation was
obtained with a laser pulse of 2.1 eV. Thus, it is reasonable to assume that most of the EPs
have energies lower than 2.1 eV. The energy of the SES differ from that of the EP by at
most the optical phonon energy. Therefore we estimd@lee¥ < K < 2.1 eV.

In an optical transition that involves a Franck—Condon transition [18], we can employ
Bartram and Stoneham’s criterion to determine whether the excited state de-excites

1 1_
E=K+I+L=K+>I+) “hoy (31)
— 2
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radiationlessly. For a mode with angular frequeacthe Bartram and Stoneham parameter

A is defined as the ratio of the excited state’s relaxation en&figyto the optical absorption
energy [19], whereS is the Huang—Rhys factor. The parameteidetermines the relative
configuration of the ground and excited states. According to this criterion, an excited state
makes a non-radiative transition if the parameteis greater than 1/4 [19].

We assume that the elastic constants of the sodium cryptand sodide’s excited state
remain unchanged from their values in the ground state. It is also assumed that as a result
of the compactness of both the ground and the sodide’s 3p states the lattice is not relaxed
when the electron is excited into the 3p state. In the present case, the ‘absorption energy’
in Bartram and Stoneham’s parameter corresponds to the electronic eétesfyhe SES
and the relaxation energ§iw corresponds t¢//2| in equation (31) (see figure 3). Thus
Bartram and Stoneham’s parameter in this case becomes

|
2K

and we must haves > %, since the SES de-excites nonradiatively. (The relaxation energy
can easily be several tenths of an eV [19].)

(32)

ENERGY

LATTICE RELAXATION

Figure 3. A configuration coordinate diagram showing the relationship between the ground
state (lower curve) and the SES (upper curve). Although there is no absorption process in this
diagram, the energX of the SES relative to the ground state corresponds to the ‘absorption
energy’ in a Franck—Condon transitiofl./2| represents the relaxation energy.

To evaluate the parameték, it is necessary to know about the wavefunction of the
SES. At the present stage we do not have such information, but some estimation can be
carried out. Letc be the probability that an electron in the SES is found in a sphere of
radiusR = 7.06 A, and y be the probability that it is found in a spherical shell of inner
radiusR and outer radiu® + D whereD = 7.06 A is the cation—anion distance. Then the
force F' on a dipole consisting of the sodium cation at distaRcand the sodide anion at
R + D from the origin is

F=¢2 [1:2(1—;0 (1—x —y)i|?o. (33)

" (R + D)2
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Let us putk = 2.0 eV andx = G. Then from equations (29), ( 32), and (33) we see
that the speed of sound decreases when eitherdecreases ot increases. It is also a
decreasing function ofA. Therefore whemA = 211, the maximum of the speed of sound
w occurs aty = 1 and its value is D5 x 10° cm s1. Thus, we conclude that in sodium
cryptand sodide the speed of sound is smaller than abGuerhOs™.

5. Summary

In this paper, the SES was introduced in order to explain the temperature dependence of the
fluorescence intensity. The scattering of the EPs by the phonons causes the EPs to transit
into the SES which does not form another exciton—polariton state. The number of EPs that
make transitions into the SES depends on both the energy relaxation speed of the EPs on
the LPB and the number of phonons which increases with temperature. Thus the decrease
of the fluorescence intensity at a higher temperature is due to the increased scatterings of
the EPs by phonons. The transition of the EPs into the SES is completed within a few ps,
in agreement with the experiment.

We attempted to describe the nonradiative de-excitation process of the SES in terms
of the spherically symmetric lattice relaxation induced by the diffuse wavefunction of the
SES. The magnitude of the lattice relaxation was quantified by approximating the crystal
as an elastic continuum. The variational principle and the continuum elasticity theory were
combined to find the electron—lattice coupling that is responsible for the displacement of the
lattice vibration. We see that the electron in the SES forms a polaron state with the coupling
occurring between the electron and the longitudinal acoustic phonons. Itis interesting to note
that while the EP state arising from the coupling of the exciton and the photon is responsible
for the photoluminescence in sodium cryptand sodide, the polaron state arising from the
coupling of the electron and the phonon is responsible for quenching the photoluminescence.
By applying Bartram and Stoneham'’s criterion to our case, we estimate that the speed of
sound in sodium cryptand sodide should be less than abSutriGs.
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